Using Triples to Reason About Concurrent Programs

K. Mani Chandy

Computer Science Department
California Institute of Technology

Caltech-CS-TR-93-02

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
20 JAN 1993 2. REPORT TYPE 20-01-1993 to 20-01-1993
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Using Triplesto Reason About Concurrent Programs £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Office of Scientific Research,875 North Randolph Street Suite | REPORT NUMBER
325,Arlington,VA,22203-1768

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 21
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Using Triples to Reason About
Concurrent Programs

K. Mani Chandy
California Institute of Technology 256-80,
Pasadena, California 91125

mani@vlsi.caltech.edu *

January 20, 1993

Abstract

This paper presents adapatations of the Hoare triple for reasoning about
concurrent programs. The rules for the Hoare triple, familiar to program-
mers from their experience with sequential programming, can be applied to
develop proofs of concurrent programs as well. The basis for the adaptations
of the Hoare triple is temporal logic.

1 Introduction

1.1 Goal

The introduction of the Hoare triple [4], more than two decades ago, provided
a mathematical foundation for reasoning about sequential programs. Now,
programmers are familiar with reasoning using the Hoare triple for sequential
programs. This paper suggests that the familiar rules for reasoning with
Hoare triples can be applied to develop proofs of concurrent programs.

This paper does not propose a new logic for concurrent programs. The
foundation is provided by temporal logic. UNITY [1] or TLA [6] can be
used to provide the framework for the operators and triples proposed in
this paper. This paper has the restricted goal of demonstrating Hoare-triple
reasoning for concurrent programs.

1.2 Triples

A relation F(U, P,V) where P is a program, and U, V are predicates on
states or computations, is defined to be Hoare-triple-like if and only if it
satisfies the following five formulae.

*Supported in Part by AFOSR 91-0070.

Strengthening left side
(U'=U)ANF(U,P,V) = FU',PV) (1)
Weakening right side
F(U,PV)NV =V = F(UPV" (2)
Disjunction of both left and right sides
F(U,P,V)NF(U',P, V'Y= F(UVU',P,V vV (3)
Conjunction of both left and right sides
F(U,P,VYANFU',P, V'Y= F(UANU',P,V AV") 4) =

The Hoare-triple formula for sequential composition is not included in the
above set because we shall propose Hoare-triple-like formulae for parallel
composition. In place of the formula for sequential composition, we use the
following formula:

Transitivity
F(U,P, V)N F(V,P,W)= F(U, P,W) (5)

The reasoning about the correctness of many concurrent programs can be
based on these familiar rules. Using a single small set of rules for reason-
ing about sequential programs, safety properties of concurrent programs,
progress properties of concurrent programs, and parallel composition, can
be simpler than using many different sets of rules.

1.3 Proposal

In this paper, we suggest two Hoare-triple-like relations:

1. U <= Vin P, read “U to always V in P”, to reason about progress
properties.

2. [U] P [V], read “U environment P V” to reason about the parallel
composition of program P with other programs.

We shall also use a Hoare-triple-like relation: U co V in P, suggested by
Misra [7], to reason about safety properties. A goal of this paper is to
suggest that these three Hoare-triple-like relations, and the five rules (1) -
(5) appear adequate for reasoning about many concurrent programs.

2 Operational Model

2.1 Introduction

The operational model is, in essence, the operational model used in UNITY
[1]. A program can be thought of as a fair, do-od loop:

do go — ao[]...[Jgn — a, od

where n is finite, and for all 4, ¢; is a deterministic terminating parallel
assignment. The fairness requirement is: If g; holds at some point in an
infinite computation then there exists a later point in the computation at
which a; is executed or ¢; does not hold. The set of guarded commands
of the parallel composition of programs is the union of the sets of guarded
commands of the components. This operational model is defined in this
section.

2.2 Definitions

Program A program is a finite tuple of variables, and a finite set of events.
The state of a program is given by the tuple of values of its variables; the
set of program states is the set of all such tuples. For completeness, we
define the set of states of a program with an empty tuple of variables as a
set consisting of a single state Sempty-

Program counters are treated as variables. Sequential composition is
represented by events that modify program counters (and possibly other
variables). ‘

Event An event A is a triple (W, E, F):

1. Variables relevant to the event: W is a nonempty subset of the
variables of the program.

2. Enabledness of the event: F is a predicate on W. The event
(W,E, F)is defined to be enabled if and only if E holds.

3. New values of variables modified by event: F'is a function that
maps from W to W. If event A is enabled in a state S, and W = W,
in state .5, then the occurrence of event (W, E, F) in state S takes the
system to a state in which W = F(W,) and the values of all other
variables remain unchanged.

In terms of the fair do-od loop, the event (W, E, F) is the guarded com-
mand:

E — W:=F(W)

State Transitions Each state transition is labeled with a single event.
There exists a transition from a state S to a state §' labeled with event A
if and only if event A is enabled in state .5, and the occurence of event A
in state S takes the system to state S’. Therefore, there exists a transition
from S to §' labeled with an event A, where A = (W, E, F), if and only if

1. E holds in state S, and

2. the values of all variables other than those in W are the same in S and
S’, and

3. if W = Wy in state S, then W = F(W,) in state S".

Since F is a function, for a given state § and a given event A, there exists
at most one transition from S labeled A.

If there exists a transition from a state S to a state S’ labeled A, then
we use A(S5) to denote state S’. If there exists no transition from S labeled
A then A(S) is undefined.

There can be an arbitrary number of transitions (each labeled with a
separate event) from a state S to a state S'.

Computation A computation is a state Sp and a sequence of events A;,
t > 0, where the i-th state S; reached in the computation is defined recur-
sively as follows:

(Vi:¢>0:A;isenabledin S;—1 A S; = A;(Si_1)) (6)

and where the sequence obeys the fairness rule, given next.

Fairness The fairness rule is that in each infinite computation, if an event
is enabled at some point in the computation, then there is a later point in
the computation at which the event occurs or is disabled.

For all events B of the program, and all infinite computations with initial
state So, and sequence of events A;,: > 0, and for all j:

(B is enabled in S;) = (3k: j < k : (Ax = B) V ~(B is enabled in S}))
where §;, all ¢ are defined in equation (6).

Maximal Computations A state S is defined to be a terminal state if
and only if there are no events enabled in §. A maximal computation is

defined to be an infinite computation or a computation ending in a terminal
state.

Programs and Concurrent Composition The parallel composition of
programs P and Q is a program denoted by P||Q). The tuple of program
variables of P||(} is the union of the tuples of program variables of P and Q.
The set of events of P||Q) is the union of the sets of events of P and Q.

Since union is associative, commutative and idempotent, it follows that
parallel composition is also associative, commutative and idempotent.

The identity element of parallel composition is a program with an empty
tuple of variables and an empty set of events.

3 Program Properties

3.1 To Always

Let U and V be predicates on the states of a program P. We introduce a
boolean, U — V in P, defined as follows:

for all mazimal computations C of P: if U holds at any point i in C then
there is a point j in C at which V holds, and after which V continues to
hold.

(U—=V)inP =
(V maximal computations C of P ::
(F4:0 < i < length(C) : U holds in S;) =
(37:0 <5 < length(C) : (Vk : j < k < length(C) : V holds in S¢)))
where S; is defined in equation (6), and length(C) is the number of events
in C.
Theorem 1 The triple U — V in P is Hoare-triple-like.

Proof: For brevity, we shall use C for a maximal computation of P, and
i, j, j' for integers where 0 < 4, 7, j' < length(C), and k for an integer where
j < k < length(C'), and &' for an integer where j' < k' < length(C).

Proof of strengthening left side:
(U'=U)A(U — Vin P)
=> {(U"= U) = (Vi:(U'holds in ;) = (U holds in 5;)) }

(VC :: (3¢ :: U’ holds in S;) = (F¢ :: U holds in S;)) A
(U < Vin P)

= { definition of — }

(VC :: (32 :: U holds in 5;) = (Ji :: U holds in S;)) A
(VC ::(3i :: U holds in S;) = (34, Yk :: V holds in 5%))

= {properties of V, and transitivity of = }

(VC :: (3¢ :: U' holds in S;) = (37,Vk :: V holds in Si))
= { definition of — }

U'—VinP

The proof of weakening the right side is very similar, and is left to the
reader.

Proof of conjunction: Assume (U — V in P)A (U’ < V'in P). The
proof is carried out for any maximal computation C.

(3i : U A U” holds in ;)
= { meaning of “holds in” }
(37 :: (U holds in 5;) A (U’ holds in S;))
= { property of 3 }
(3¢ :: (U holds in S;)) A (Fi :: (U holds in S;))
> {(U—VinP)A(U'>VinP))}
(34, Vk :: V holds in Si) A (35, VK’ :: V' holds in Sy/)
= { for any j, j satisfying this formula, set j to max(j,) }
(37 :: (Vk 2 V holds in Sg) A (Vk :: V' holds in Sy))
=, {predicate calculus}
(37, Yk :: (V holds in Si) A (V" holds in S))
= { meaning of “holds in” }
(37,Vk :: V A V' holds in S)

The proof follows.

Proof of disjunction: Assume (U <« V in P)A (U’ < V' in P). The
proof is carried out for any maximal computation C.

(3i = UV U" holds in S;)
= { meaning of “holds in” }

(34 :: (U holds in S;) V (U’ holds in S;))
= { property of 3 }

(37 :: U holds in S;) V (3¢ :: U’ holds in S;)
= {(U—=VinP)A(U'—Vin P)}

(34,Vk :: V holds in Si) V (37,Vk :: V' holds in Sy)
= { property of 3 }

(37 :: (Vk 2 V holds in Si) V (Vk :: V' holds in S%))
= { property of V }

(35 = (VE = (V holds in Sk) V (V' holds in Sk)))
= { meaning of “holds in” }

(37 :: (Vk =V V V' holds in %))

The proof follows.
The proof of transitivity is similar, and is left to the reader.

3.2 co
The definition of co, adapted from Misra [7], is

(U coV in P) =
(U= V)A(Yeveuts (W, E,F)of P:: {UAE}W := F(W){V})

Misra has shown from the properties of Hoare triples, and transitivity of =,
that U co V in P is Hoare-triple-like, and since the set of events of P[|Q is
the union of the sets of events of P and Q:

(UecoVin PYA(UcoVinQ) = (UcoVin P||Q) (7

Misra has also shown that (U co V in P) holds if and only if U = V, and
for all state transitions in P from a state § to a state S’, if U holds in state
S then V holds in state §".

3.3 Proving To-Always Properties
We can prove U — V in P using the UNITY rule, see [1]:

(UA=V)co(UVV)inP) A (VecoVinP) A
(Jevent (W,E,F)in P::(UA=V)= E) A {UA-V}W = F(W) {V})
=>U—VinP

The rule follows from:

L. (UA=V) co(UVV)in P implies that if U A =V holds for a state S
in a computation of P, and S is not a terminal state of P, then in
the next state either U A =V continues to hold, or V holds; therefore
U A =~V continues to hold forever, or eventually V holds [1].

2. (Jevent (W, E,F)in P :: (UA-V) = E) A {UN-V} (W, E, F){V})
implies that U A=V cannot continue to hold forever, because if U A=V
holds then the event (W, E, F') is enabled, and from the fairness rule,
eventually W := F(W) will be executed, and that makes V hold.

3. V co Vin P implies that if V holds at any point in a computation of
P then it continues to hold forever thereafter.

We can also use the five Hoare-triple rules in proving U <« V in P. A
particularly valuable rule is weakening the right side. In sequential pro-
gramming, to prove that a predicate Z always holds, we may have to prove
that a stronger predicate than 7 is an invariant. Likewise, to prove U < V
in P we may have to prove U < W in P where W is stronger than V.

Theorem 2
(UcoUin P) = (U Uin P)

Proof: Follows from the proof rule for <, substituting U for V.

4 Compositional Triples

Compositional triples are used in proving parallel composition of programs,
given the specifications (but not the program texts) of the components.

Program Properties A program-property is defined to be a predicate on
programs. We use the abbreviation “property” for program-property where
no ambiguity results.
For a property a and a program P, we use the notation
ain P

to denote the boolean: property o holds for program P. We define:

(eAB)inP = (ain P)A(Bin P) (8)
(ra)in P = =(ain P)
Hence,
(aVB)inP = (ainP)V(Bin P)

Examples of properties that we use in reasoning about concurrent programs
are UcoV,and U - V.

Let U and V be properties, and let P be a program. A compositional
triple is a boolean, defined as follows:

[PVl = (VprogramsQ :U inQ||P:V in Q||P)

The triple says that if we restrict attention to environments of P such that
U is a property of P composed with its environment, then V is a property
of P composed with its environment.

Theorem 3 The relation [U] P [V] is Hoare-triple-like.
Proof:

Proof of strengthening left side
(U’ = U) A([U]P[V])

= {U'=VU)= (YQ:U'nQ||P:UinQ|P)}
(YQ : U in QI[P : U in Q||P) A ([U]P[V])
= { definition of [U]P[V] }
 (YQ:U'in QIP:Uin QIP)A(VQ : Uin Q||P: V in Q||P)
= { predicate calculus }
(YQ:U'in Q[IP:V in Q||P)
= { definition of [U/]P[V] }

(U] P[V]

The proof of weakening the right side is similar.
Proof of conjunction

(WP A([U1P[V'])
= { definition of compositional triple }

(VQ:Uim Q|P:VinQIP)ANVQ :U'in Q||P : V' in Q|| P)
= { predicate calculus }

(VQ : (Uin QIIP) A (U"in Q[|P) : (V in Q||P) A (V' in Q|| P))
= { equation (8) }

(VQ : (UAU'in Q||P): (V AV'in Q||P))
= { definition of compositional triple }

([UAUP[V AV
Proofs of disjunction and transitivity are similar.

Proofs of Composition The following two theorems are helpful in com-
positional design of concurrent programs.

Theorem 4 Inheritance: A parallel block inherits compositional triples of
its components.

w1Q vl = (v@' = (U1 QIQV) (9)
Proof:
[01Q [v]
= {definition of compositional triple}
(YP:Uin Q||P:V in Q|P)
= {setting P to Q'||P' }
(VQ', P’ : U in Q|IQI| P : V in Q[|Q[| P")

= { predicate calculus }

10

(VQ" = (VP' = Uin QP V in Q[|Q']|P))
= {definition of compositional triple}

(V@' (U@l [v])

The proof that

V@' = (U1 QIRQ'TVD) = (V1@ [V])
follows by setting Q' to @, since Q||Q = Q.

Corollary For any given set of programs Py. .. P,:
(Vi:0<i<n:[U] P [V])=> (Vi: 0<i<n:[U] Boll...||P. [Vi])

Proof: Follows from the last theorem, and the associativity and commu-
tativity of parallel composition.

Theorem 5 The derivation of a compositional triple for a parallel compo-
sition from the compositional triples of its components.

For any given set of programs Py ...P,:
Vi:0<i<n:[U] B [V] =
[(Vi:0<i<n:T)] Poll...[1Pa [(Vi:0<i<n: W)

Proof: Follows from the previous corollary and conjunctivity.

Example An example of a compositional triple is given next.
Let U and V be predicates on states of programs. Let (W,E,F) be an
event of a program P such that

(UA=V)=E) A {UAN-V}W := F(W) {V}
Define a program property Z as follows:
Z = (UA-V)eo(UVV)) A (VeoV)

Then:
[Z]P[U — V]

Proof: For all programs Q:

11

Z in P||Q
{ definition of Z, and existence of event (W, E, F)in P }

(UN=V)co(UVV) in PIQ)A (V coVin P||Q)A
(event (W, E, F)in P||Q :: (UA=V)= E)A{UA-V} W := F(W) {V})

{proof rule for <}

U— Vi P|Q

5 Example

5.1 Proof Restrictions

In our proofs we place two significant restrictions on ourselves:

1. The only proof rules we use are the Hoare-triple rules, and the basic
rules for proving — and co.

2. Our proofs are compositional: the specification of a composition of
programs is proved from specifications but not the program texts of the
components.

A potential concern is that by restricting ourselves in this way we we will
produce proofs that are much longer than if we use the full power of temporal
logic or if we use program texts. Our hypothesis is that many programs
can be designed so that they can be proved with the restrictions, without
significantly increasing the length or complexity of proofs.

In the next section we present a simple example of a concurrent program

proof using triples.

5.2 The Problem

The problem is a slightly more complex version of the earliest meeting time
example in [1]. A parallel composition of three professors, P;, 0 < i < 3, and
a secretary Sec, computes the earliest time at which all three professors can
meet. Time ranges over the nonnegative integers.

. Professor P; has input z and output y;, all . Associated with P; is a

function f;, where f;(k) is the earliest time at or after k that P; can meet.
If y; < fi(z) then P; nondeterministically selects some value in the range
Yi ... fi(z), and sets y; to this value. If y; remains less than fi(z) then
eventually P; will increase y;.

The secretary Sec has input y;, all ¢, and output z. If 2 < max; y;, then

Sec nondeterministically selects some value in the range z...max; y;, and
sets z to this value. If z remains less than max; y; then, eventually Sec will
increase z.

12

Let e be the earliest common meeting time of all professors:
e=(mint:t>0At= fi(t):1t)

We are given that e exists and is finite.

We wish to prove that if (0 < = < e) A (Vi :: y; < e) at any point in a
computation, then eventually (z = e) A (Vi :: y; = €) in the computation.

A sequential program that computes e is:

z := 0; while z # g(z) do z := g(z); { Assert: z =¢ }
where g(z) = max; f;(z). An invariant of the loop is = < e, since 0 < e, and
z<e = g(z)<e

A variant function for the loop is € — z. At termination of the program,
z = g(z), and the loop invariant holds, and hence = = e.
From the program, it follows that there exists a finite N such that

g (0)=e
where ¢* is k successive applications of function g.
Next, we give the formal specification of the problem.
5.3 Specification of Professors
1. Variables of P; are z and ;.
2. Professor ¢ does not modify z:
(x=k)co(z=k)in P
3. Professor ¢ does not decrease ¥;:
nondecreasing(y;) in P;

where the property nondecreasing(z) is defined as

nondecreasing(z) = (Vk :: (2 > k) co (2 > k))

4. Professor i does not set y; to larger than the next meeting time at or
after .

(z <K)A (3 < filk)) co (vi < fi(k)) in P;

5. If = and y; are nondecreasing in any program that has P; as one of its
components, then (z > k) — (y; > fi(k)) in that program.
[nondecreasing(z, ;)] P; [(z > k) = (y: > f:(k))]

where the property nondecreasing(z,y;) is defined as:

nondecreasing(z, y;) = nondecreasing(z) A nondecreasing(y;)

13

5.4 Specification of the Secretary
1. Variables of Sec are z, and y;,7 = 0,1, 2.

2. The secretary does not modify v;, all 1.

(Visyi=my)co(Vizy = m;) in Sec

3. The secretary does not decrease z.

nondecreasing(z) in Sec

4. The secretary does not set to larger than the maximum of the y; all
i.
(Vi <mi) A (2 < max; m;) co (z < max; m;) in Sec

5. If z and y;, all 4, are nondecreasing in any program that has Sec as
one of its components, then (Vi :: y; > m;) — (z > max; m;) in that
program.

[nondecreasing(z, yo, y1, y2)l Sec [(Vi:y; > m;) — (z > max; m;)]

5.5 Stability

Let:
W = (z<e)A(Vizy; <e)

Let us prove
W coW in P;

Proof:

From the specification of P;:
(2 <E)A (3 < fi(k)) co (i < fi(k)) in P;
= {substituting e for £, and using f;(e) = e}
(z<e)A(yi<e)) co(yi<e) in P,
=3 {Using conjunctivity, and (y; < €) co (yi <e) in P, for j #1

since y; is not a variable of P;, and (z < e) co (z < e)in P,
since z is not modified by P;}

W coWin P;

The proof of W co W in Sec is very similar and is not given here. The proof
of W co Win R, where R = F,||P,||P2||Sec follows from the composition-
ality of co, equation (7).

14

Monotonicity Next we prove:
(r>k)co(z>k)in R
Proof: From the specification of Sec:
(x> k)co(z>k)in Sec
Since z is not modified by P;, all <.
(z>k)co(z>k)in P
From the above two equations and equation (7)
(z>Fk)co(z>k)inR
The proof of (y; > m;) co (y; > m;)in R is almost identical.
5.6 Progress

Next we shall prove:
(z>20) > (z>e)in R

Proof:

From the specification of P;:
(Vi :: [nondecreasing(z,y;)] P [z >k — w; > fi(k)])
=> { we have proved nondecreasing(z, y;) all i in R }
(Vizz >k < g > fi(k)in R)
= {Conjunction}
(22 k) (Vi g > fi(k)) in
= { We can prove similarly, using the specification of Sec
(Vi 35 > fi(k)) = (= > max; fi(K)) in B
and using transitivity, and g(k) = max; fi(k)}
@2k o (o> g(k)in R
= {Transitivity}
(22 k) = (= > g¥(k)) in B
= {Substitute 0 for k, and use g™V (0) = e}

(z>0)—>(z>e)in R

15

5.7 Termination

Finally we prove:
(0<z<e)A(Viny;<e) = (z=e)A(Vizy;=e)in R
Proof:

‘We have shown:
(z>0)—>(z>e)in R

=> {transitivity, using ¢ > k < y; > fi(k)in R,
which we proved in the last theorem, and substituting e for k, and
using f;(e) = e, and taking conjunction over all 7 }

(z>20)—(Vizy; >e)in R
= {conjunction of the last two and W — W}

(0<z<e)A(Vizy;<e) — (z=e)A(Vizy;=e)in R

6 Evaluation, Further Work, and Past Work

6.1 Monotonicity, Auxiliary Variables and Progress

Part of the specification for a mutual-exclusion program has the form: If P
is waiting to enter its critical section then in a finite number of steps, P will
be in its critical section. The predicate in critical section holds for only a
finite number of steps, so

waiting for critical section — in critical section

does not hold for a mutual-exclusion program.
Often, the progress property for mutual exclusion is specified as:

waiting for critical section ~» in critical section

where U ~+ V is defined as: if U holds at some point in a computation then
V holds at a later point in the computation [6, 1]. But, U ~» V in P is not
Hoare-triple-like because it does not satisfy conjunctivity. A central question
for the approach proposed in this paper is: Can we specify and reason about
concurrent programs using only triples that satisfy the five rules: (1) - (5) ?
This issue is explored in the next two paragraphs.

Programs are designed with some concept of “progress” in computations
— informally speaking, more has been accomplished at a.later point in a
computation than at an earlier point in the computation. The concept of

16

progress in terms of “more being accomplished” is appropriate even for non-
terminating programs such as database systems: for instance, more transac-
tions have been processed later in the computation. The notion of progress
can be captured by variables (or auxiliary variables) that are monotone non-
decreasing, and where as more gets accomplished, the variable gets larger.
The value of such a variable is a measure (and there can be many measures)
of progress, and so we call such variables progress variables. In a database
system, an example of a progress variable is the number of transactions that
have been processed.

In the case of the mutual-exclusion problem, examples of progress vari-
ables are p.nw, the number of times that a process p transits from not-waiting
to waiting to enter critical section, and p.ne, the number of times that pro-
cess p enters its critical section. We can specify the progress property in
terms of progress variables:

(pnw > k) — (p.ne>k)

because “p has entered its critical section at least k times” is a stable property
for any k.

Many problems, including those in [1] can be specified using < rather
than ~». What, then, are the disadvantages of <?

The primary disadvantage appears to be that the use of — often re-
quires the introduction of progress variables, and the introduction of auxil-
iary variables can lead to over-specification, because auxiliary variables can
be defined in terms of an implementation. The introduction of p.nw and
p.ne (and similar progress variables for other problems) does not, however,
appear to result in over-specification.

6.2 Compositional Triples

Safety properties are compositional, equation(7). Progress properties are
not, in general, compositional:

(UsVinP)A(U—=VinQ) # (U= Vin P|Q)

Compositional triples provide a way for proving specifications of parallel
compositions of programs from specifications, but not the program texts, of
components. Usually, in a compositional triple, the right side is a progress
property, and the left side is a safety property or a conjunction of safety and
progress properties.

We could have defined compositional triples in the following way: if the
environment @ of P has a property U, then P||Q has property V. This
definition was rejected because it does not yield the theorem on inheritance
of compositional triples, a central theorem in our approach to the design of
concurrent programs. Also, this definition does not yield transitivity.

17

6.3 Future Work

Weakest Environments An intriguing line of research is to explore weak-
est environment, an analog to weakest precondition [2] for compositional
triples. Ior a given program P and property V can we compute a weakest
environment — a weakest property U such that [U]P[V] holds? If it can be
computed, how can it be used in program derivation?

For example, consider a program P with a single variable z, and a single
event that is always enabled and increments z by 1. The program can be
represented by the do - od loop;

do true — z:=z+ 1lod
Let V be the property:
(Vi ks (22) = (5> 5 +)
The weakest U that satisfies [U]P[V] is
nondecreasing(z)

Is it possible to derive a calculus of concurrent program derivation based
on weakest environments? Is there a similar calculus for progress properties
using —7

Mechanical Proof Checkers Since the proof method proposed in this
paper is based on Hoare-triple rules, mechanical proof checkers for sequen-
tial programs based on Hoare triples should be extensible to handle proofs
of concurrent programs using our proof method. How difficult is such an
extension? '

Completeness We need to explore the completeness of the rules for «.
The rule may be incomplete even with the use of auxiliary variables.

Proper Concurrent Composition To what extent can proofs of concur-
rent programs be simplified by restricting parallel composition? For instance,
let us define the parallel composition of programs P and Q to be proper if
and only if in P||@, a variable can be modified by at most one program —
either P or @ but not both. In this case:

UcoVinP = UcoVinP||Q

if V references only variables modified by P. Likewise, proofs of progress
properties can also be simplified.

Many concurrent programs, especially programs using message-passing,
are structured so that parallel composition is proper. A line of research is
to derive more powerful rules for proper parallel composition.

18

Evaluating the Hypothesis Our hypothesis is that most concurrent pro-
grams can be proved using only the well-known simple rules for Hoare triples;
more complex rules and logics are not needed. This hypothesis needs to be
evaluated by studying a large class of examples.

6.4 Past Work

This paper is based on UNITY [1]. The earliest proof methods for concurrent
programming used Hoare triples, and were proposed in Owicki and Gries [8].
The proof method proposed in this paper is different from that proposed by
Owicki and Gries in that noninterference in this paper is captured by com-
positional triples which are designed to help in proving concurrent programs
without using the texts of components.

Compositional triples are very similar in spirit to the rely-guarantee ap-
proach proposed by CIff Jones [5]. There are, however, differences in the
definitions. Compositional triples deal with parallel composition of any en-
vironment and a program P, such that the composed program has property
U — thus the rely property is a property of P and its environment.

This paper is motivated by Hoare’s work on Hoare triples [4]. The proof
structure in this paper is from Dijkstra and Scholten [3]

7 Acknowledgment

Thanks at Caltech to U. Binau, M. van der Goot, P. Hofstee, R. Leino,
B. Massingill, A. Rifkin, P. Sivilotti, J. van de Snepscheut, J. Thornley,
and J. Tierno, for their suggestions. Thanks to E. Knapp, L. Lamport,
J. Misra and A. Singh for their careful reading. Special thanks to Rustan
Leino for pointing out the identity element and the idempotence of parallel
composition, and for strengthening some theorems by replacing implication
by equality.

References

(1] Chandy, K. M. and J. Misra Parallel Program Design: A Foundation,
Addison-Wesley, Reading, Massachusetts, 1988.

(2] Dijkstra, E.W., A Discpline of Programming, Prentice-Hall, Englewood
Cliffs, N.J. 1976.

[3] Dijkstra, E.W., and C.S. Scholten, Predicate Calculus and Program Se-
mantics, Springer-Verlag, New York, 1990.

[4] Hoare, C. A. R., “An Axiomatic Basis for Computer Programming,”
CACM, Vol. 12, 1969, pp 576-580.

19

Jones, C.B., Systematic Software Development Using VDM, Prentice-
Hall International, Englewood Cliffs, N.J. 1986.

Lamport, L., “A Temporal Logic of Actions,” Digital Equipment Corp.
Systems Research Center, Palo Alto, tech report 57, April 1990.

Misra, J., “Safety Properties” Report from Computer Sciences Dept.,
Univ. of Texas, Austin, TX78712, July 24, 1992.

Owicki, S., and D. Gries, “An Axiomatic Proof Technique for Parallel
Programs I,” Acta Informatica, vol. 6, no.1, 1976, pp 319-340.

20

